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INTRODUCTION

The promise of fast, general purpose, nonlinear adaptive mapping functions useful in pattern
recognition tasks (classification, identification, system control) has gained a resurgence in interest
now that computer processing is relatively inexpensive. In various problems involving pattern
recognition, the overall task may call for prediction, estimation, interpolation or extrapolation from the
data at hand. To accomplish this, the analyst may try to model an unknown system or function.
Neurocomputing techniques can be applied to the system identification problem using adaptive
algorithms for either parameter or functional estimation. In neurocomputing, data is typically
processed by one or more homogeneous arrays of simple processors (also called processing
elements or cells) possessing nonlinear behavior and operating in parallel. The arrangement of
these cells constitutes a neural network.

One type of neural network is the multilayered feedforward perceptron net (MFP). Within it, data is
modified by sequentially traversing in a strictly forward direction through one layer of cells after
another, going through each layer only once. The data can be modified radically by each layer. As
shown in figure 0, the first layer of processors may extract subfeatures that are then processed in the
second bank to form even more abstract features, and so on, eventually leading to the desired
output.

Multilayer feedforward perceptron networks with as few as a single hidden (intermediate) layer of
processing elements (PE's) with appropriately smooth activation functions are capable of arbitrarily
accurate approximations to arbitrary mappings [HSw1] and their derivatives. In fact, these networks
can approximate functions that are only piecewise differentiable.[HSw2]. This may have numerous
applications in system identification and control [Seel],[NaPa], pattern recognition and classification
[See2], and nonlinear filtering [Lipp]. Neural networks can be trained to perform a variety of different
tasks, including credit card fraud detection [Schw], word error detection during decoding of block
codes [JePr], sonar classification [GoSe], engine exhaust diagnostics!, equities trading?, and airline
seating®. In general, perceptron networks map m-dimensional input data to n-dimensional output
data, where typically m>n.

In all cases the parameters that govern the network's behavior need to be determined, either
explicitly or adaptively. The nonlinear nature of perceptron networks makes the calculation of the
network's parameters in a single-step very difficult. Therefore, adaptive techniques, whereby the
network is repeatedly presented the input and desired output data patterns, are more popular.
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Figure 0. In a MFP neural network, the input data can be transformed into increasingly abstract
patterns.

There exist many adaptive techniques for finding parameters that minimize a function. In perceptron
networks those methods that modify estimates of each parameter within a PE by utilizing only
information about the PE's parameters perform PE-local computations and are classified as PE-local
techniques. Methods utilizing information about all the weights simultaneously (as in matrix
inversion) are classified as global techniques. Other techniques could exist that fall between these
two extremes. However, the more local the computations, the more easily one may anticipate its
implementation in distributed, parallel processing hardware.

In addition to its mathematical simplicity, this may be another reason why BackPropagation
[Werb],[Rume],[Gorm],[SeRo], a very local iterative technique, is the most popular method for training
feedforward multilayer perceptron networks. However, the two biggest disadvantages of Back-
Propagation (BP) include very slow learning and frequent inferior solutions when the problem to be
solved is moderately complex or the number of nodes in the net becomes large. [Waib]

Numerous speed-up modifications to the BP algorithm exist, including momentum [Rume], Delta-Bar-
Delta [Jaco], QuickProp [Fahl], conjugate gradients [KrSa], extended Kalman filtering [Siwu], Gain BP
[Gasb], Gram-Schmidt signal decorrelation [Orph], and a new generation of self-reconfiguring
feedforward networks [FaLe],[Ash]. The first four methods are relatively simple to execute and have
delivered improvement in convergence speed for some applications, but as this report will show, the
new proposed algorithm has performed better in all cases. The next two methods are significantly
more complex and require matrix inversion, a non-local process that is considered disadvantageous
when implementing the algorithm in distributed, parallel processing hardware. Signal decorrelation
techniques may be advantageous but extensive benchmarking results are not available. Self-
reconfiguring techniques, whereby the neural network adds more cells on an as-needed basis, may
be impractical in real-time modeling of nonstationary processes because, as the process changes
over time, the network adjusts by becoming ever larger without bounds.
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The author proposes a new algorithm, called Backpercolation (Perc), for training feedforward
perceptron networks. To a large extent, Perc satisfies the following useful constraints:

1. training stability does not degrade when there are many hidden layers,

2. training does not require non-local calculations (such as matrix inversion),

3. training does not automatically increase the number of elements in the architecture,
4. weights converge quickly toward attaining arbitrarily accurate output.

The basic Perc algorithm involves only PE-local calculations and does not employ momentum, matrix
inversion, nested iterative searches or self-reconfiguration. However, Perc may be useful to self-
reconfiguring perceptron networks when each reconfiguration requires weight retraining.

BENCHMARK COMPARISONS

This section covers experimental results of the Perc algorithm applied against the following types of
benchmark training tasks: N-Bit Parity, N-M-N Encoder/Decoder, N-N-N Linear Channel, Multiplexer
and Symmetry Detection. Perc's convergence speed on each training task is compared (in table 2)
to the best published result from a collection of other perceptron training techniques as found in the
technical literature. (See table 3.)

The N-Bit Parity task requires training a network to output the parity of the binary input vector. For
example, 2-bit parity is equivalent to the XOR logic function on 2 input values. In this case, the
network acepts two binary input values, a and b, and outputs the binary value ¢ = (a XOR b). Table
1 maps out all the legitimate a,b,c combinations. In order to present standardized values to the
network, the logic value 0 is replaced by -1.

Table 1 c=a XOR b

The N-M-N Encoder/Decoder task requires training a network to replicate its N binary input pattern
with its N cell output. At any one time, only one input cell is set to true (true= +1) and the remaining
N-1 cells are set to false (false= -1). For each of the N patterns to be presented to the network, a
different cell is set true. The information in these patterns must squeeze through a hidden layer of
only M cells, M<N. Kruglyak [Krug] has shown how to solve the N-2-N bit encoder problem
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graphically for any value of N. However, whether or not a perceptron network could find the solution
for very large N is unknown. The greater the ratio N:M, the more the network must compress the
input data. Nonetheless, Perc can find a solution with 100% probability of success to the 12-2-12
arrangement in less than 600 epochs of training. To date, the 12-2-12 represents a compression
ration of 6:1, which may be the largest ratio reportedly solved by a perceptron network through
gradient-based weight adaptation.

For the N-N-N Linear Channel task, all three layers have N cells. The network is required to
replicate any vector pattern of N continuously variable (floating point) input values with its N output
cells, providing, of course, the randomized input values range between +1 and -1. Only the 10-10-10
arrangement has been seen in the technical literature by the author, wherein 100 randomized
training patterns were presented in each epoch.

For the Multiplexer task, the input layer has N + 2N cells and the output layer has only one cell. The
N input lines can represent a binary encoding, or address, of any of the other 2N input lines. The
desired output of the network is the input to the cell designated by the address line. Only the 6-6-1
arrangement has been seen in the technical literature by the author.

For the Symmetry Detection task, the input layer has 2N cells and the output layer has only one cell.
The network is to detect if the first N inputs are identical, in reverse arrangement, to the second N
inputs. For example, the input pattern (0,0,1,1,0,0) would require an output of 1 (symmetry is found),
whereas the input 0,0,1,0,1,1 would require an output of -1 (symmetry is not found). For Perc, the
standardized input values were +1 and -1.

In the symmetry detection experiment, N=3. Consequently, there are only 2N=8 uniquely symmetrical
patterns and 22N=64 possible input combinations. As a result, a symmetric pattern would occur in
training only 8/64 = 12.5% of the time. If not compensated for this, the network would learn to bias its
output toward the decision of no symmetry in a manner similar to a Bayesian classifier. [RRKOS],[Wan]
Therefore, when training with Perc, the author has arranged the training patterns to alternate
between one that is symmetric and one that is not. This necessitated adding to the pattern database
copies of the symmetric patterns in order to have equal number of symmetric/ nonsymmetric
examples. This almost doubled the number of training patterns in an epoch from 64 to 120. In order
to have a fair comparison of training speed, (which really should measure the total number of pattern
presentations to a network), the posted number of epochs for Perc in table 2 is twice the actual
average number of epochs that occured during experimentation.
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In the following table, the CONFIG column contains the number of cells in the input, hidden and
output layers respectively. The D term indicates that the network included direct weighted
connections between the input and output cells. The G term indicates that the hidden cells warping
function was gaussian rather than sigmoidal. The ERROR column contains the training cutoff error
tolerance, whereupon the magnitude of the output error of each output cell for each training pattern
must be less than the value stated for training to cease. The symbols a and b indicate the version of
Backpercolation employed. The % column specifies the fraction of 50 training episodes that
produced successful convergence (i.e., when error fell below the cutoff.) EPOCHS is the average
number of training epochs required to get successful convergence. PARADIGM describes the
training method used for comparison. The symbol ? in this column indicates that the author is not
aware of any published report on this specific type/configuration/error combination, but wishes to
publish Perc's results anyway for the reader's benefit.

TRAINING TASK BACKPERCOLATION BEST OTHER PARADIGM
TYPE CONFIG. ERR ab % EPOCHS | EPOCHS PARADIGM
Parity 2-2-1 XOR 0.1 a 100 8 73  Conjugate Gradient
3-3-1 0.1 a 100 18 247  Gram Schmidt
2-1-1 D 0.1 a 100 8 24  Cascade Corr. D,G
3-1-1 D 0.1 a 100 6 32 Cascade Corr. D,G
4-4-1 D,G 0.1 a 100 5 66 Cascade Corr. D,G
8-8-1 D,G 0.1 a 100 28 357 Cascade Corr. D,G
6-6-6-1 11 b 80 93 5713  Solis / Wets Optiimize
Encoder - 8-2-8 0.4 a 100 88 103  Quickprop
Decoder 8-2-8 0.1 a 100 194 2 2
8-3-8 0.4 a 100 22 22 Quickprop
8-3-8 0.1 a 100 28 68 Conjugate Gradient
10-2-10 0.4 a 100 246 2 ?
10-2-10 0.1 a 100 472 2 ?
10-5-10 0.4 a 100 15 14  Quickprop
10-5-10 0.1 a 100 19 71 Conjugate Gradient
12-2-12 0.4 a 100 545 o 7
Linear Channel 10-10-10 0.1 a 100 8 125  Super-SAB
Multiplex 6-6-1 0.1 b 100 24 137  Delta-Bar-Delta
Symmetry 6-2-1 0.3 b 84 2x62 198  Gain Backpropagation
TABLE 2

Comparisons in convergence speed between Perc and other paradigms.
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Note 1: The training cutoff occurred when the squared error of the output cell, summed across all the
training patterns was less than 0.0002.

One final point: the tanh(n) warping function used by Perc has a dynamic range [-1,+1] that is twice

as large as that used by most networks, which is [0,+1]. For fair comparison of output error between
these two ranges, the actual error (dy - f|) of cells using tanh(n) is scaled down by 50%. In this way,

an output error of 0.2 from a cell with the larger range is equivalent, in relative terms, to an output
error of 0.1 from a cell with the smaller range.

TRAINING METHOD

DESCRIPTION

Conjugate Gradient
(CG)

Gain Backpropagation
(GBP)

Delta-Bar-Delta
(DBD)

QuickProp
(QP)

Super-SAB
(SS)

Cascade Correlation
(CC)

Gram-Schmidt
(GS)

Solis/Wets Optimization
(SWO0)

The direction of weight adjustment combines both the gradient of the global error
surface and the prior direction of adjustment, in such a way that the new direction is
conjugate to the old direction. Uses the Polak-Ribiere method. [KrSa]

Cost function to be mimimized is based on both current and past data. GBP requires
updating and inverting an exponential time averaged auto-correlation matrix of the
input data as each pattern is presented to the network. [GaSb]

Each weight has its own learning rate that increases linearly as long as the weight's
direction of change does not rapidly alternate, in which case learning rate decreases
exponentially. [Jaco]

Each weight change moves the system state toward the center of a more shallow
sloped error surface. Local valleys in the error surface are assumed to be parabolic,
thereby permitting quick approximation of location of zero-slope region. [Fahl]

Each weight has its own learning rate that increases exponentially as long as the
weight's direction of change does not alternate, in which case learning rate decreases
exponentially. Decrease rate is faster than increase rate. [Toll]

Hidden layer cells are added one at a time and their weight values are not changed
after the cell has been added. Input weights are set to maximize the covariance
between new cell’'s output and network’s output error. [FalLe]

Input data vector to each layer is first preprocessed by Gram-Schmidt orthogonali-
zation. BackPropagation is modified so that gradients can travel backward through
the Gram-Schmidt layers. [Orph]

Weight vector for the entire network is modified by the random optimization method
of Solis & Wets. [Baba]

Table 3

Brief description of the perceptron training methods that were compared to Backpercolation.
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K. Miscellaneous properties

Tunnelling Through Local Minima

One of the biggest problems with using a strict gradient descent down the global error surface is
that if the surface is nonlinear and full of local minima then the process could get stuck in a minima
that yields poor network performance. Perc also uses gradient descent, but on the local level.
Figures 12a and 12b suggest pretty strongly that the latter method allows the network to tunnel
through minimas in the global error surface. Figure 12a shows how the absolute value of the error
of the output cell, averaged across all training patterns in the 6-2-1 symmetry detection experiment,
increased during training for 30 consecutive epochs before descending to a lower error. Figure
12b shows this phenomenon occuring twice.
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FIGURE 12a Output of 6-2-1 network showing FIGURE 12b Output of 6-2-1 network showing

how it traversed up the global error surface for how it twice traversed up the global error surface
30 consecutive epochs of training. during training.
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Weight Trajectories

Fahlman and Lebiere [FalLe] suggest that one factor contributing to BP's slow convergence is what
they call the "moving target problem". They state: "because all the weights in the network are
changing at once, each hidden unit sees a constantly changing environment. Therefore, instead of
moving quickly to assume useful roles in the overall problem solution, the hidden units engage in a
complex dance with much wasted motion."

All the charts in figure 13 illustrate that weight trajectories under Perc training are engaged in very
little wasted motion. Trajectories are fairly clean and display symmetry when there is symmetry in the
problem itself. Much wasted motion does occur if the error amplification factor | is too large, causing
instability.
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Figure 13 - Selected trajectories of weight values versus epoch count
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